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Algorithms for nonlinear eigenvalue problems (EP’s) often require solving self-consistently a large
number of EP’s. Convergence difficulties may occur if the solution is not sought in an appropriate
region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multi-
grid (MG) algorithms for nonlinear problems and for EP’s obtained from discretizations of partial
differential EP have often been shown to be more efficient than single level algorithms. This paper
presents MG techniques and a MG algorithm for nonlinear Schrodinger-Poisson EP’s. The algorithm
overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous
treatment of the eigenvectors and nonlinearity, and with the global constraints; MG stable sub-
space continuation techniques for the treatment of nonlinearity; and a MG projection coupled with
backrotations for separation of solutions. These techniques keep the solutions in an appropriate
region, where the algorithm converges fast, and reduce the large number of self-consistent iterations
to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently
overcome difficulties related to clusters of close and equal eigenvalues. Computational examples
for the nonlinear Schrédinger-Poisson EP in two and three dimensions, presenting special computa-
tional difficulties, that are due to the nonlinearity and to the equal and closely clustered eigenvalues
are demonstrated. For these cases, the algorithm requires O(¢N) operations for the calculation of
g eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per
fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel
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relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.

PACS number(s): 02.70.Bf, 02.70.Rw, 02.60.Lj

I. INTRODUCTION

Multigrid (MG) techniques for nonlinear problems and
for eigenvalue problems (EP’s) such as many large scale
problems from physics, chemistry, and engineering have
often been shown to be more efficient than single level
techniques [1-4]. MG techniques can use efficiently fea-
tures which are generally not used by single level tech-
niques; for example, the problems can be approximated
on several discretization levels, the solutions can be well
approximated by solutions of coarse level problems, only
a few eigenvalues and eigenvectors are sought, and the so-
lutions are dominated by smooth components [2]. More-
over, MG eigenvalue techniques have powerful solving ca-
pabilities, for example, they can approximate well the
efficient inverse power iteration for eigenvalue problems
[5]

MG techniques involve, in general, the processing of
the problem on a sequence of discretization levels. Usu-
ally, these levels are finite dimensional function spaces
defined on increasingly finer grids [3,4].

To treat nonlinear problems or systems of coupled
problems, as in our case, algorithms often involve a large
number of self-consistent iterations. The iterations may
be inefficient or may not converge if the approximated
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solution is not in an appropriate region. The treat-
ment of these difficulties becomes harder when combined
with eigenvalue difficulties. Large computational diffi-
culties are faced by eigenvalue solvers especially when
close or equal eigenvalues are present, common difficul-
ties for Schrodinger and electromagnetism EP’s. In such
cases, instead of approximating an eigenvector, proce-
dures usually approximate a linear combination of eigen-
vectors with close or equal eigenvalues. This is referred to
as eigenvector mixing. See [6] for more discussions on dif-
ficulties related to MG eigenvalue solvers for linear EP’s.
The nonlinear Schrodinger EP treated in the computa-
tional examples is ill posed when defined on incomplete
clusters of eigenvectors. Global constraints imposed on
the solutions, such as norms, orthogonality, and given av-
erage, introduce additional difficulties in MG algorithms
since these constraints are not conserved by interlevel
transfers of solutions, e.g., the transfers alter the norms
and orthogonality of solutions.

The above mentioned difficulties are closely coupled.
The treatment of the nonlinearity and of the constraints
should be done simultaneously with the update of eigen-
vectors, to keep the approximate solution in the appro-
priate region of the exact solution where the algorithm
is efficient. These motivate a further simultaneous MG
approach.
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This paper focuses on MG techniques for overcoming
the above mentioned difficulties, and presents a MG ro-
bust and efficient algorithm for the calculation of a few
eigenvalues and their corresponding eigenvectors for the
nonlinear Schrodinger-Poisson EP. This problem is im-
portant for semiconductor technology. For a theoretical
analysis see, for example, [7].

The problem used for illustration is the computa-
tion of the first ¢ eigenvectors ul,...,u? and the corre-
sponding smallest eigenvalues (in modulus) Ay,..., Ay of
the discretized Schrodinger-Poisson nonlinear EP (or of
Hartree-Fock type)

Aut — (V 4+ eWut = \ub, i=1,...,q,
q
AW = —¢; Z(ui)2 + c2,
=1 (1)

']l = 1,
Jw=o.

Periodic boundary conditions are assumed. Eigenvectors
in degenerate eigenspaces are required to be orthogonal.
The problem has to be solved in two and three dimensions
(2D and 3D). V is a given linear potential operator, W
is a nonlinear potential, also to be calculated, and ¢;, cz,
and € are constants. If € is zero the problem is linear,
otherwise it is nonlinear since the potential W depends on
the solutions. It is assumed that the clusters containing
the desired g eigenvectors are complete.

The problem is represented and solved on a sequence
of coarse to fine levels. The algorithm is based on sepa-
ration of eigenspaces and of eigenvectors in eigenspaces,
simultaneously treated with the nonlinearity and the con-
straints on all levels. Transfers between levels are used
to reduce as much as possible the heavy computational
tasks from fine levels to inexpensive tasks on coarse lev-
els. The algorithm may be outlined by three steps: (1)
get an approximation of the solution on a coarse level,
(2) interpolate the solution to a finer level; (3) improve
the fine solution by a few MG cycles. Repeat steps 2 and
3 until the finest level is reached. The approximation on
the coarse level at step 1 solves first the linear problem
(e = 0), then the nonlinear one by a continuation pro-
cedure. A MG cycle at step 3 starts on the fine level,
transfers the problem successively down to coarser levels
and then up, returning to the fine level. On each level,
the eigenvectors and the nonlinear potential are updated,
and on a coarse level the eigenvectors are separated by
projections and backrotations. The separation of fine
level eigenvectors by transfers coupled with coarse level
projections is called multigrid projection (MGP) [8,6].

Simultaneous MG schemes reduce the many self-
consistent iterations to solve the nonlinearity to a single
simultaneous iteration. Due to the MGP, the algorithm
achieves a better computational complexity and a bet-
ter convergence rate than previous MG eigenvalue algo-
rithms which use only fine level projections. Increased
robustness is obtained due to the MGP coupled with
backrotations, and due to the simultaneous treatment
of eigenvectors with the nonlinearity and with the global
constraints.
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The presented techniques are applicable to a much
larger class of problems, as can easily be observed. In
particular, the algorithms without the treatment of non-
linearity were used for linear eigenvalue problems too; see
[9,6].

The computational examples were chosen to include
special difficulties such as very close and equal eigenval-
ues. The algorithm uses a few (1-4) fine level cycles, and
in each cycle two fine level Gauss-Seidel relaxations per
eigenvector are performed. The algorithm yields accu-
rate results for very close eigenvalues, and accuracy of
more than ten decimal places for equal eigenvalues. Ex-
act orthogonality of fine level eigenvectors is obtained by
the coarse level MGP. A second order approximation is
obtained in O(gNN) work, for ¢ eigenvectors of size N on
the finest level. An asymptotic convergence rate of 0.15
per MG cycle is obtained.

For early works, theory, and more references on MG
eigenvalue algorithms, we refer to [10,11,5,2,3,12,4,13].
The sequential MG algorithm for linear EP’s, which per-
forms the separation of eigenvectors on the finest level
[2], is combined with a conjugate residual method, and
applied to a Hartree-Fock nonlinear eigenvalue problem
in [14]. In [14] real problems are solved. Our numerical
approach differs from the approach in [14] by the MG
simultaneous treatment of the nonlinear problem, by the
MGP, and by the MG stable subspace continuation tech-
niques.

Previous versions of the results presented here and ad-
ditional technical discussions are given in the reports [8]
and [15]. The linear adaptive techniques presented in
[16,6], can be directly combined with the presented tech-
niques. Algorithms and more references for single level
large scale complex eigenvalue problems can be found in
[17]. We refer to [18-20], for theory on algebraic eigen-
value problems; and to [21-23], for aspects of the single
level technique used here, of obtaining a few eigenvectors
and their eigenvalues for linear EP’s.

The MG projection and backrotations were first intro-
duced in [24], and in the reports [8] and [16], and analyzed
in [25]. A related computational approach is outlined in
[26].

The paper is organized as follows. The next two sub-
sections I A and IB describe the MG discretization of the
nonlinear Schréodinger-Poisson EP and the general full
approximation scheme (FAS) interlevel transfers. Section
II outlines the MG eigenvector separation techniques pre-
sented in more detail in [16,6]. Section III presents the
MG nonlinear techniques, i.e., the MG cycle for the non-
linear potential W, the simultaneous updating of eigen-
vectors and potential, the treatment of global constraints,
the subspace continuation procedures, and the full multi-
grid (FMG) nonlinear eigenvalue algorithm. Sec. IV
presents computational examples. Conclusions are pre-
sented in Sec. V.

A. The discretization of the nonlinear
Schrédinger-Poisson eigenvalue problem

Assume that © is a domain in RY% and let
G1,Ga,...,G,, be a sequence of increasingly finer grids
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that extend over 2. The space of functions defined on
grid Gy is called level k. T ,lc denote transfer operators
from level k to level I, e.g., I, can be interpolation op-
erators. The discretization of problem (1), on finest grid
G, has the following form:

Aku}c — (Vk + CWk)u}; = /\iu};,

q
AW = —e1 > (u})? + e,
i=1 (2)

||u;c”k =1,
SwWi=o.

If Gy is not the finest grid then relations (2) include FAS
right hand sides as shown in the next sections. Here Ay
is a discrete approximation to the Laplacian. On the
finest level, the eigenvectors in degenerate eigenspaces
should be orthogonal. Periodic boundary conditions are
assumed for Q—a box in R?. The W} denotes the jth
component of Wy on level k and V} is a representation of
the potential V on level k, e.g., is a transfer of the finest
level V,,, to coarser level k, i.e., V), = I,’ﬁle.

B. FAS transfers

The following is a general formulation of the FAS [1],
which is applied to the eigenvalue equations, to the sep-
aration of eigenvectors, to the nonlinear equation, and
to the global constraints. We use the notations from [6].
Assume that

FU, =T, 3)

is a level ¢ problem, where F; is a general operator and
T; is a right hand side. A level j problem

FiU; =T; (4)
is called a FAS transfer of the level ¢ problem (3) if
Tj = Ig(Ti — FZU,) + F]'IZUZ' . (5)

The level j problem (4) is used in solving the level 3z
problem (3), i.e., in correcting the level i solution U
with the level j solution U; by the FAS correction

Upe = U + L(U; — LU . (6)

Assume that U; is the exact solution of (3). Then the

transfer of U; to level j, Ig U;, is the exact solution of (4),
and the correction (6) does not change the exact solution
U;.

II. MULTIGRID SEPARATION TECHNIQUES

The introduced algorithm combines MG linear eigen-
value techniques with techniques for nonlinear problems.

The linear eigenvalue techniques consist in approximat-
ing and separating the desired clusters by relaxations and
by MG cycles; and in separating the eigenvectors inside
the clusters by MG projections (MGP’s). If the eigenval-
ues are well enough approximated then relaxations and
MG cycles also efficiently separately eigenvectors even for
clusters of close but not equal eigenvalues. The MGP,
the central eigenvector separation tool, introduced and
applied in [8,6], is presented briefly next to make the fur-
ther presentation more clear and self-contained.
Consider the level ¢ eigenvalue relation

AiVi =ViA (7)

where A = diag(Ay,...,Aq) contains on the diagonal the
q sought eigenvalues corresponding to the sought eigen-
vectors of the matrix A;, which are the columns of V;.
Assume that U; which satisfies

Vi =U:E (8)

is given instead of V;, where F is a g X q invertible matrix
to be found. Substituting (8) into (7) gives

AU;E = U;EA . (9)

Consider (9) written as a level ¢ problem in FAS form,
where T; = 0:

A UE -U;EA =T;E . (10)
Then the FAS transfer of (10) to level j is
A;U;E —U;EA =T;E (11)

where U; = IgUi. T;E is computed by (5), and results
in

Tj = Iz(Tz — A,Uz) + AJ’I{U,' . (12)

Solutions E and A for (11) can be computed by a
Rayleigh-Ritz type projection, i.e., multiplying (11) with
a YjT, e.g., Y; = Uj, and solving the resulting small ¢ x ¢
generalized eigenvalue problem

Y (A;U; — Tj)E = (Y] U;)EA . (13)

Since the problems (10) and (11) have the same form,
the problem (11) can be further transferred in the same
FAS way to other levels and to obtain (E,A) on the last
level, e.g., on the coarsest level. The process of obtaining
(E,A) by transferring the eigenvalue problem to other
levels is called the MG projection (MGP). The MGP is a
MG generalization of the Rayleigh-Ritz projection [20,6].

Backrotations [6] are techniques introduced for pre-
venting rotations of solutions in subspaces of eigenvec-
tors with equal or close eigenvalues, and for preventing
permutations, rescalings, and sign changing of solutions
during processing. In the presented algorithm, the back-
rotations are used after the computation of (E,A) by
a MGP, since EF may permute or mix the eigenvectors.
Permutations and mixing appear especially in degener-
ate eigenspaces. If degenerate subspaces are present, the
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backrotation should bring E to a form close to block di-
agonal and having on diagonal blocks close to the identity
matrix. This is achieved by sorting the eigenvalues in A,
permuting correspondingly the columns of F, and multi-
plying FE by a block diagonal matrix, having on diagonal
the inverses of the E’s diagonal blocks associated to equal
eigenvalues, followed by rescaling of columns.

III. MG TECHNIQUES FOR THE TREATMENT
OF THE NONLINEARITY

The central techniques for nonlinear problems are il-
lustrated on the nonlinear Schrédinger Poisson EP (1).
The treatment of the nonlinearity is performed by updat-
ing the nonlinear potential W simultaneously with the
eigenvectors as well as with the global constraints. The
following MG techniques are presented: a MG-potential-
solver cycle for W, a simultaneous-FAS cycle for W and
eigenvectors, the treatment of the global constraints, the
subspace continuation procedures, and the simultaneous-
nonlinear-FMG algorithm.

A. A MG solver cycle for the nonlinear potential

In a MG cycle for updating W, we have two options:
(1) to keep the u'’s fixed and (2) to update also the u?’s.
The first case leads to sequential cycles where separate
cycles are performed for W and for u. The second case
leads to simultaneous cycles. The two cases lead to differ-
ent FAS transfers. In this section the u®’s are considered
fixed, while in Sec. IIIB the u’s are updated together
with W. The equation to be solved for the nonlinear
potential W is

AWy =py . (14)
Here, for k < m, py, is the FAS right hand side of (14),
Pk = Ly (Prt1 — Art1 W) + Bkl Wiy - (15)

On the finest level, k = m,

q
Pr = —C1 Z(UZ)Z +c2 . (16)
i=1

A MG-potential-solver cycle for W is

(Wm) <+ MG-Potential-Solver (m,W,,,p,!)
For k =m,...,l (step by —1) do:
Wi +Relax (m, Wk,pk, k, l)
If £ > | Transfer:
Wiy = If "Wy,

pr—1 = I (o — Ak Wy)
+Ag_ 1 Wiy
End
For k=1,...,m (step by 1) do:
If (k >1) Correct
Wi = Wi + If_,(Wi_y — I} Wy)
Wi «Relax (m, W, px, k,1)
End
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This is the usual V type cycle from fine level m to
coarse level [. Other cycles can be defined as well which
involve a different sequence of visiting the levels. The
work involved by such a cycle is several times (about
four times) the finest level relaxation work. Such a cycle
can be used in the next algorithms instead relaxations
for W, but in the numerical tests this was not necessary.
Similar solver cycles can be defined for the u?.

B. The MG simultaneous updating of nonlinear
potential and eigenvectors

In the MG potential solver, the u;’s are fixed. A MG
simultaneous-FAS cycle is obtained by combining the up-
dating of u’s with the updating of W. The nonlinear
equations in FAS form are

Akufc — (Ve + eWk)ufc — /\iu}; = T,f; s (17)
q .
AxWi +c1 Y (uh)? —c2 = pr - (18)
=1

Denote by Lj the operator
Lk:Ak—Vk—GWk—/\i. (19)

Both W;, and u;, are considered variables. The 'r,’; and pg,
in (17) and (18), are zero on the finest level and equal to
the FAS right hand sides on the other levels, namely,

T = Ik+1('r,f,+1 - Lk+1u;c+1) + Lk'[l’:+1u;c+1 , (20)

q
e =I5, (Pk+1 = Bry1Wip1 — a1 Z(uiﬂ)z)

=1

q
+AkIl’:+1Wk+1 ta Z(III:+1“Z:+1)2 . (21)

=1

The ul’s are updated by relaxations, using (17) while Wj,
is considered constant. W, is updated by relaxations us-
ing (18) while u},...,uj are considered constants. The
uy’s are updated by projections and backrotations on
coarse levels. The simultaneous-FAS cycle in Sec. IITE
describes this algorithm.
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C. The MG treatment of global constraints

The FAS treatment of global constraints is needed to
keep the approximate solutions in the appropriate neigh-
borhood of the exact solutions, where the algorithm is
efficient. Keeping the solutions in an appropriate neigh-
borhood is accomplished in conjunction with the simulta-
neous techniques, the subspace continuation techniques,
and the FMG algorithm. The solutions should satisfy
several global constraints. The parameter c; is set arbi-
trarily to ¢; = 1 but it can also be used as a parameter
in a continuation technique. The potential V is periodic
and the solutions ui are periodic. Thus W is periodic;
therefore

/AW:O. (22)

The integral is taken over the whole domain. Discretizing
(22) and using (18), c; must satisfy on the current finest
grid

Nm g
2= 3 3 (U )/ N (23)

j=11i=1

where N, is the number of nodes on grid m. Since on
the current finest level

lumll =1, (24)

¢, results independent of u and it is kept constant on all
levels.

If W is a solution then for any constant C, W+C is also
a solution for the same eigenvectors and the eigenvalues
A; — C. The constant C is fixed by the condition on W:

/W:O. (25)

The FAS formulation of the discretized condition (25)
is

Y wi=0 (26)

on all levels, if the fine to coarse grid transfers conserve
zero sums, e.g., as the full weighting transfer which is
often used. Otherwise the appropriate FAS condition
should be set using (5).

The FAS formulation of the norm condition |jug|| =1

becomes [for Fu = ||u|| in (3); see also [2]]

lukmsll = pror = 15 el + i — flusll - (27)

The norms are set to 1 after interpolating the solution
the first time to the current finest level and are set to
the pr values, on the coarsest levels, at the end of the
backrotations. In (27) the same norm notation has been
used for the different norms on the different levels.

D. MG subspace continuation techniques

The central idea of subspace-continuation techniques is
to use a stable subspace of solutions of a given eigenvalue
problem to approximate the subspace of solutions of the
problem perturbed. It is important that the subspace of
the perturbed problem is well approximated and not the
solutions of the perturbed problem. The solutions inside
the stable subspace may be very sensitive to perturba-
tions. Subspace-continuation procedures can depend on
one, on several, or on a continuum of parameters, e.g.,
the continuation can be performed by the parameter p
varied from 0 to 1 for uW; or by two parameters a, yu for
aV + uW; or the parameters may be the elements of W.

The continuation process on the coarsest level which
we used most in our tests is the following. First the linear
problem is solved by a sequence of relaxations, orthog-
onalizations, and projections for W = 0 fixed. This is
to approximate first the subspace of the eigenvectors and
not the eigenvectors themselves. Then the problem with
the potential

Vi=V +uW (28)

is considered, where p is a parameter. In the continuation
procedure, the p increases in steps, from 0 to €. At each
step, the linear problem is resolved, considering W fixed,
and afterwards W is recomputed. Thus the subspace is
updated first. This would mean performing the continu-
ation on uW. A continuation using two parameters is to
solve first the linear problem for V' = 0, then perform a
continuation on uW until u = € is reached, and only af-
ter that to start a continuation process on the linear part
of the potential aV. The justification to do this comes
from the fact that V may split degenerate eigenspaces
in clusters with very close eigenvalues. The continuation
having all elements of W as parameters consists in self-
consistent iterations in which the linear problem is solved
in turns with the updating of W.

The single level continuation procedures described
above can be performed in a MG way, leading to MG
sequential self-consistent schemes. See also [14] for a
MG sequential self-consistent scheme. A more general
MG sequential self-consistent scheme is the following MG
sequential-continuation algorithm, which iterates the si-
multaneous updating of the eigenvectors by MG cycles
with the updating of W by MG cycles.
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(U, Wi, A) + MG-Sequential-Continuation(U,,, W,,, A)
Set =0
While 0 <y <edo:
solve until convergence:
1) Solve the linear problem for fixed W,,, and potential V,,, + puW,,
(Um, Ay ) < U-Simultaneous-FAS(m, q,Up,, Wi, A, L, T,y V1, V2)
2) Solve for W,,, keeping U,,, A fixed:
(Wm) +— MG-Potential-Solver (m,W,,,pm,!)
Update W, such that: Z;\;"'l Wi =0
Increase p

The above U-simultaneous-FAS algorithm is obtained by removing from the simultaneous-FAS algorithm presented
in Sec. ITII E the updating of W, p, p. This is an algorithm for simultaneously updating the eigenvectors, which separates
the eigenvectors by projection on a coarse level. The different MG cycles for the eigenvectors and potential may have
different coarsest levels. The MG-sequential-continuation procedure can be used on coarse levels at initial stages.
Such a procedure may be expensive on fine levels, numerical tests showing that on fine levels often a large number of
iterations are necessary for convergence, or that the procedure may even not converge. An efficient alternative is the
simultaneous-nonlinear-FMG procedure presented next.

E. The simultaneous nonlinear FMG eigenvalue algorithm

The FMG algorithm for the nonlinear Schrédinger-Poisson EP is presented next. Assume for simplicity, in this
section, that on the coarsest level k = 1 all eigenvectors can be well approximated. Denote by Uy = (uf,...,ul) the
matrix on level k£ having as columns the approximations of the desired ¢ eigenvectors, corresponding to the eigenvalues
of A = diag(A1,...,Aq). Assume the same type of vector notations for 7%, pi, and p. The simultaneous-nonlinear-FMG
algorithm for q eigenvectors, m levels, reads as follows.

Simultaneous-Nonlinear-FMG(m, ¢, Up,, Wya, Ay L, Ty Py Py V1, V25 7Y)
Set U; random, A =0,W; =0
For k£ = 1 until m do:
1) If k=1 get:
(Uky Wi, A) < Continuation(Uy, Wi, A)
Ifk<mthen: k=k+1
2) Interpolate
U =If_ U1,
Wk = I]’:._1Wk—1

3)Set 7. =0, pr=1, ca2= Z;-vz"l iy (ui;)?/Ne, pPr=0
”"4:” =1, AN=((Ar—Vi— eWk)u};,u};)
4) Do « times :
(Uky Wi, A) < Simultaneous-FAS(k,q, U, Wi, A, L, Tk, Pk, Pk, V1, V2)
Endif

Continuation(Uy, Wi, A)
Set £ =10
While 0 < u<edo:
If 4 =0 get U, A by Relaxations, Orthogonalizations and Projections
Else solve until convergence steps 1, 2:
1) Solve the linear problem for U, A by Relaxations and Projections.
2) Solve for Wi, : AWy +c1 >0, (ul)? = ez, Z;\;"l wl=0
Endif
Increase

Simultaneous-FAS(k, q, Uk, Wi, A, L, Tk, Pk, Pk, V1, V2)
For k=m,...,1 step —1 do:

If k=1 do:
1) (Ug, Wk, A) < CoarseLevel(k,q, Ly, U, Wi, A, Tk, pr, Pk)
Else

2) Relax vy times with initial guess Uy, Wy, :
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TABLE 1. The residuals and eigenvalues of the first five eigenvectors of the discretized nonlinear
Schrédinger-Poisson EP in 2D, on six levels, computed by a 1-FMG-V(1,1) simultaneous algorithm.
On the first level five cycles were performed and on the second level three cycles. The projection
was performed on level 2. Seven cycles were performed on the finest level to illustrate a constant
convergence rate per MG cycle of 0.15. The residuals are computed at the start and at the end
of the V(1,1) cycles; and the eigenvalues at the end of the cycles by Rayleigh quotients. The
decrease of the residuals by a factor of 4 from one level to the next (the start residuals in the first
cycle, on fine levels) indicates a second order convergence towards the differential solution for the
eigenvectors.

Cycle Vector Start res. End res. Eigenvalue
Level 1
5 1 0.37x10° 3 0.46x10~ 13 -0.15528834591395x 102
2 0.12x10712 0.84x10713 -0.90047054014218x 102
3 0.85x10713 0.79x10713 -0.90047054014218x10?
4 0.74x10712 0.26x10712 -0.10369602966161x10°
5 0.12x107 0.45x10712 -0.10369602966161x10°
Level 2
1 1 0.44x10? 0.50x1073 -0.15182335042395x 102
2 0.30x 102 0.22x1071 -0.10144043667188x10°%
3 0.30x 102 0.22x1071 -0.10144043667188x 103
4 0.32x102% 0.47x1071 -0.12014770030904 %103
5 0.32x102 0.47x1071 -0.12014770030904x10%
3 1 0.17x10°° 0.60x10°° -0.15182335072480x 102
2 0.43x10°* 0.88x10°7 -0.10144043560798x10°
3 0.43x107* 0.88x10~7 -0.10144043560798x 103
4 0.19x1073 0.84x107° -0.12014769418108x10%
5 0.19x1073 0.84x107° -0.12014769418108x 103
Level 3
1 1 0.13x10! 0.59x10° 1 -0.15069813064192x 102
2 0.11x10? 0.46x1071 -0.10444903871181x 103
3 0.11x10?% 0.46x101 -0.10444903871181x10°
4 0.12x102 0.88x107* -0.12465344903258 x10°
5 0.12x102 0.88x1071 -0.12465344903258x 103
Level 4
1 1 0.36x10° 0.22x1071 -0.15039575054851x 107
2 0.31x10? 0.32x107! -0.10521096070648x10°
3 0.31x10? 0.32x107?! -0.10521096070648x 103
4 0.33x10* 0.19x107? -0.12580555034765x 103
5 0.33x10! 0.19x107? -0.12580555034763x 103
Level 5
1 1 0.95x10° ! 0.65x10~° -0.15031924453065x 107
2 0.79%10° 0.13x1071 -0.10540212079295x10°
3 0.79x10° 0.13x1071 -0.10540212079291x10°
4 0.85%x10° 0.85x1072 -0.12609530927232x103
5 0.85x10° 0.85x107? -0.12609530927231x103
Level 6
1 1 0.24x107 1! 0.17x1072 -0.15030004902969x 10>
2 0.20x10° 0.39x1072 -0.10544995104364x10°
3 0.20x10° 0.39x1072 -0.10544995104306 x 10°
4 0.21x10° 0.28x1072 -0.12616785302342x10°
5 0.21x10° 0.28x1072 -0.12616785302487x10%
3 1 0.17x10°° 0.18x10°*? -0.15030004885985 x 10>
2 0.46x1073 0.55x107% -0.10544995101300x 103
3 0.46x1073 0.55x10~% -0.10544995101134x 103
4 0.34x1073 0.42x107% -0.12616785302509x 10>
5 0.34x1073 0.42x10~* -0.12616785302485x10°
7 1 0.29%x10°7 0.88x10°% -0.15030004896583 x 107
2 0.92x10~7 0.11x10~7 -0.10544995101183x10°
3 0.92x10~7 0.11x10~7 -0.10544995101118x 103
4 0.80%x10~7 0.11x10~7 -0.12616785302732x 103
5 0.80x10~7 0.99%x10~8 -0.12616785302532x10°

1187



1188 SORIN COSTINER AND SHLOMO TA’ASAN

AWy + ey Y (uh)? —c2 = pr, 70 Wi =0
LyUy = 7
3) Compute the residual ri = 7, — LUy
4) Restrict 1,1 = Lk_lI,I:_lUk + I,’:"lrk
5) Set pr—1 = Mg IF Wi + 0 (I ud)? + IF (o1 — AW —

:'1=1 ('“‘7:)2)

6) Set pr_1 = ”I;’:_lUk” + pr — ||Ukl|
7) Restrict :
Ug_1 = I:_lUk,
Wk_l s ILc—ka
Endif

For k =2,...,m step 1 do:

9) If k < m Interpolate and FAS correct:

U, = Uy +I,’:_1(Uk_1 - Il’:_lUk)

Wi = Wi + I,,:_I(Wk.*l — I}:_IWk)

Endif
10) Relax v, times:
LUy =7

AWi+cr SL (uh)? —c2 =pr, Y Wi=0

CoarseLevel(k, q, Ly, Ux, Wi, A, T, pk, Dk)
Do until convergence :

1) Update (U, A) by Projection and Backrotation

2) Solve for W:
AW + 1 Y1, (uh)? — c2 = pr,
3) Relax LiUg = 7%

In the simultaneous-nonlinear-FMG algorithm, at step
3, the eigenvalues are updated by Rayleigh quotients:
i = ((Ak — Vi — eWg)ub, ub ) /(ui, ui). The constant v is
the number of cycles performed on each level. vy, (v2) is
the number of relaxations performed in the simultaneous
cycle, on each level in the path from fine to coarse (coarse
to fine). Such a V cycle will be denoted V(vy,v2) and
the FMG with « cycles as above will be denoted by ~-
FMG—V(Vl, I/z).

If not all desired eigenvectors can be well approximated
on coarsest level then the nonlinear-FMG algorithm can
be used in an adaptive version in which the nonlinear
FMG is performed for clusters of close or equal eigenval-
ues, each cluster having its own coarsest level. The single
difference is that in the computations of p the sums for
the eigenvectors are performed not only for the eigenvec-
tors in the cluster but for all eigenvectors in the other
approximated clusters, on the common levels (else a re-
striction of W can be used). The clusters of close and
equal eigenvalues have to be completed in order to ob-
tain robustness and efficiency. The constants v, v;, and
vz and the coarse level on which to perform the projection
efficiently can be found adaptively. For this the adaptive
techniques presented in [6] can be used.

F. Storage, work, and accuracy

In the algorithm presented in the previous section,
storage is required for the g eigenvectors u}c of size N
on the finest grid, the potentials, and the corresponding
right hand sides, on all levels, giving an overall estimate
of memory of order O(3(N + 3)) for problems in 2D and

N )
Zj:kl wi=0

TABLE II. The residuals of the nonlinear potential W of
the discretized nonlinear Schrodinger-Poisson EP in 2D, on
six levels, computed by a 1-FMG-V(1,1) simultaneous algo-
rithm. Three relaxations were performed for W. On the first
level five cycles were performed and on the second level three
cycles. Seven cycles were performed on the finest level to il-
lustrate a constant convergence rate per MG cycle of 0.15.
The residuals are computed at the start and at the end of the
MG cycles. The decrease of the residuals by a factor of 4 from
one level to the next (the start residuals in the first cycle, on
fine levels) indicates a second order convergence towards the
differential solution for W.

Cycle Start res. End res.

Level 1

1 0.11x107° 0.10x10~ 3
Level 2

1 0.35x10° 0.16x10°°

2 0.16x1073 0.59x107°

3 0.59x107¢ 0.23x1078
Level 3

1 0.36x10~ 1 0.13x1073
Level 4

1 0.69x10~° 0.11x1073
Level 5

1 0.17x10~2 0.37x10~*
Level 6

1 0.44x1073 0.11x10-%

2 0.11x10~* 0.86x107°

3 0.86x107° 0.98x10°7

4 0.98x10~7 0.12x10~7

5 0.12x10°7 0.14x1078

6 0.14x1078 0.16x10~°

7 0.16x107° 0.21x1071°
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3D. The work requires O(IN) operations per eigenvector
and O(N) operations for the nonlinear potential. The
work performed on the coarsest grids should be added
to these estimates. Usually this work does not change
the complexity of the algorithm, being only a part of the
fine level work. In the case of degenerate or clustered
eigenvalues, if scalar products accurately 0 are needed
on the finest levels, inside the degenerate or clustered
eigenspaces, then orthonormalizations may be required
within these eigenspaces on the finest level. However, as
can be seen in the computational examples, accurate or-
thogonality inside degenerate clusters may be obtained
by coarse level separation also. The schemes presented

O(h?) accuracy for the five-point in 2D and nine-point in
3D Laplacians, for a 1-FMG-V(1,1) algorithm, as seen in
the outputs, where A is the step size.

IV. COMPUTATIONAL RESULTS

Computational results of the algorithm presented in
Sec. IIIE are presented and discussed further. Tables
I and II present results for the 2D, nonlinear eigen-
value problem (1) with the potential V(z,y) = 14 —
(2n/a)2f(z,y)/[7 + f(z,y)]. Here f(z,y) = sin(10z +
10y) +cos(10z+10y) (a = 27/10 is the size of the domain

TABLE III. The residuals and eigenvalues of the first seven eigenvectors of the discretized non-
linear Schrédinger-Poisson EP in 3D, on three levels, computed by a 4-FMG-V(1,1) simultaneous
algorithm. The linear potential is V(x, y, z) = 14—100sin(10z+10y+10z)/[30+sin(10z+10y+10z)].
On the first level seven cycles were performed. The projection was performed on level 2. The resid-
uals are computed at the start and at the end of the V(1,1) cycles; and the eigenvalues at the end

of the cycles. Observe the six equal eigenvalues.

Cycle Vector Start res. End res. Eigenvalue
Level 1
7 1 0.89x10~ 13 0.76x10~13 -0.14048591304840x 102
2 0.93x107° 0.38x107° -0.95098529109559 %102
3 0.93x107° 0.38x107° -0.95098529109559 x 102
4 0.93x10~° 0.38x107° -0.95098529109559x 102
5 0.93x107° 0.38x107° -0.95098529109559x 102
6 0.93x107° 0.38x107° -0.95098529109559x 102
7 0.93x107° 0.38x107° -0.95098529109559 x 102
Level 2
1 1 0.90x10% 0.33x10° 2 -0.14040128427761x 102
2 0.30x102 0.18x10° -0.10899132948707x 103
3 0.30x102% 0.18x10° -0.10899132948707x10°
4 0.30x10?% 0.18x10° -0.10899132948707x 103
5 0.30x102 0.18x10° -0.10899132948707x10°
6 0.30x102 0.18x10° -0.10899132948707x10°
7 0.30x102 0.18x10° -0.10899132948707x 103
4 1 0.22x10° 7 0.17x10°% -0.14040128424469x 10>
2 0.30x1073 0.23x107* -0.10899126009610x 103
3 0.30x1073 0.23x107* -0.10899126009610x 103
4 0.30x1073 0.23x107* -0.10899126009610x 10%
5 0.30x1073 0.23x107* -0.10899126009610x 103
6 0.30x1073 0.23x107* -0.10899126009610x 10°
7 0.30x1073 0.23x10~* -0.10899126009610x 10>
Level 3
1 1 0.25x10° 0.46x10° 1 -0.14036829480230x 10>
2 0.11x102% 0.69x10° -0.11274758485900x 103
3 0.11x102 0.69%x10° -0.11274758485900%x 103
4 0.11x102% 0.69x10° -0.11274758485900x 10
5 0.11x10? 0.69x10° -0.11274758485900x 103
6 0.11x102% 0.69x10° -0.11274758485900x 103
7 0.11x10?% 0.69x10° -0.11274758485900x 103
4 1 0.58x10~3 0.65x10~ % -0.14036815617277x10°
2 0.20x10~2 0.30x1073 -0.11274310146319x 103
3 0.20x1072 0.30x1073 -0.11274310146319x103
4 0.20x10~2 0.30x1073 -0.11274310146319x 103
5 0.20x1072 0.30x1073 -0.11274310146319x10°
6 0.20x10~2 0.30x1073 -0.11274310146319%x 103
7 0.20x1072 0.30x1073 -0.11274310146319x10°
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in both directions ). V is chosen so in order to determine
a cluster consisting of two clusters of two equal eigenval-
ues. A 1-FMG-V(1,1) algorithm was used to show that
one V(1,1) cycle per level is enough to obtain a second
order convergence towards the continuous solution. See
for this the residuals at the start of the first V cycle on
each level decreasing by a factor of about 4 from one level
to the next finer level. (The mesh size decreases by a fac-
tor of 2 from one level to the next finer one.) Seven V
cycles were performed on finest level 6, to show the con-
vergence rate for eigenvectors and potential, better than
0.15 in all cycles. The convergence rate is the same for all

eigenvectors in the cluster, of order 0.15 in all cycles from
3 to 7. For the potential W, three relaxations were used,
but a MG cycle for W could be employed as well instead
(this was not needed in the tests performed). The sep-
aration by projection is performed on level 2 instead of
1 and the eigenvalue systems were solved exactly on the
coarsest level. The eigenvectors are normalized to 1 on
the finest level. The presented eigenvalues are computed
by Rayleigh quotients on the finest levels. (Generally, the
fine level Rayleigh quotients are not necessary, the coarse
level projection providing accurate eigenvalues, but they
have been shown to improve the efficiency of at least the

TABLE IV. The residuals and eigenvalues of the first seven eigenvectors of the discretized non-
linear Schrodinger-Poisson EP in 3D, on three levels, computed by a 4-FMG-V(1,1) simultaneous
algorithm. The linear potential is V (z,y, 2) = 14—100sin(30z+20y+10z)/[30+sin(30z+20y+10z)].
On the first level seven cycles were performed. The projection was performed on level 2. The resid-
uals are computed at the start and at the end of the V(1,1) cycles; and the eigenvalues at the end
of the cycles. Observe the six eigenvalues with six common digits in the cluster of six consisting in

three degenerate clusters.

Cycle Vector Start res. End res. Eigenvalue
Level 1
7 1 0.52x10~ 12 0.23x10°1? -0.14055580293076 x 10°
2 0.19x1077 0.11x10°7 -0.95112505605267 x 10%
3 0.23x10°7 0.59%x1078 -0.95112505605267 x 10%
4 0.47x107% 0.14x10°7 -0.95112516406102 %10
5 0.44x10°7 0.12x10°7 -0.95112516406102x 102
6 0.43x1078 0.75x107° -0.95112516406102 % 10%
7 0.54x1078 0.64x107° -0.95112516406102 % 10>
Level 2
1 1 0.13x 10" 0.13x10~ ¢ -0.14053758492811 x 102
2 0.30x102% 0.17x10° -0.10901746968777x10°
3 0.30x102 0.17x10° -0.10901746968777x10°%
4 0.30x102% 0.17x10° -0.10901758164786x10°
5 0.30x102 0.17x10° -0.10901758164786x 10>
6 0.30x10?% 0.17x10° -0.10901781869743x10°
7 0.30x102 0.17x10° -0.10901781869743x10°
4 1 0.35x10°1° 0.12x10° 10 -0.14053758492812x 107
2 0.38x107° 0.21x1077 -0.10901741800157x 103
3 0.38x107° 0.21x1077 -0.10901741800157x10°%
4 0.17x107* 0.83x107° -0.10901752982146 x10°
5 0.17x10~* 0.83x107° -0.10901752982146x10%
6 0.37x10°° 0.17x10~7 -0.10901776702773x10°
7 0.37x107° 0.17x10~7 -0.10901776702773x10°
Level 3
1 1 0.13x10!? 0.25%x10° -0.14051499340829 x 102
2 0.11x102 0.75x10° -0.11277655294003 x 10°
3 0.11x102 0.75x10° -0.11277655294003x10°
4 0.11x102 0.75x10° -0.11277700995289 % 103
5 0.11x102 0.75x10° -0.11277700995289%x 103
6 0.11x102 0.74x10° -0.11277731911554%x 103
7 0.11x10% 0.74x10° -0.11277731911554x10°
4 1 0.29x10°2 0.32x10°° -0.14051251375940% 102
2 0.64x1072 0.96x1073 -0.11277176295116x10°
3 0.64x1072 0.96x1073 -0.11277176295116x10°
4 0.92x1072 0.17x1072 -0.11277225319175%10%
5 0.92x1072 0.17x1072 -0.11277225319175%10°
6 0.55x1072 0.80x1073 -0.11277260890858 %103
7 0.55x1072 0.80x1073 -0.11277260890858 103
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TABLE V. The residuals of the nonlinear potential W of the discretized nonlinear
Schrédinger-Poisson EP in 3D, on three levels, computed by a 4-FMG-V(1,1) simultaneous al-
gorithm. Three relaxations were performed for W. The residuals are computed at the start and at

the end of the MG cycles.

Cycle Start res. End res.

Level 1

7 0.49x10°1° 0.20x10°1°
Level 2

1 0.38x10° 0.13x10° %

2 0.13x107* 0.72x1077

3 0.72x10°7 0.20x1078

4 0.20x10~8 0.99%x107°
Level 3

1 0.30x1071 0.39x10°3

2 0.39x1073 0.52x10~*

3 0.52x10~* 0.72x1075

4 0.72x107° 0.10x10°°

first cycle on each level. In the first cycle, the eigenval-
ues are improved by the quotients and used on the path
down before they are recomputed by the projection. This
first cycle is generally sufficiently efficient for obtaining
a second order scheme so that additional cycles are not
necessary, at least until the finest level where one may
desire accurate converged solutions, and thus would em-
ploy several more cycles.) The degenerate eigenvalues
come out with 11-14 equal digits. The convergence rate
of the nonlinear potential is also about 0.15 per cycle, as
for the eigenvectors; see Table II. Accurate separation is
obtained in the cluster and in degenerate eigenspaces, al-
though the separation was performed on the coarse level
2. The scalar products on level 6 are of order 10712
[15]. Although the clusters are well separated, a rela-
tively strong mixing of solutions appears especially on
coarse levels motivating the MGP.

Tables III-IV present results for problems in 3D which
are similar to the 2D results. The first seven eigenvectors
were sought. The problems were discretized on three
levels. The cycles were V(1,1) and the projections were
performed on the second level.

The potential V(z,y,z) = 14 — 100sin(10z + 10y +
102)/[30 + sin(10z + 10y + 10z)] provides a cluster of
six degenerate eigenvalues, presented in Table III. The
approximations of the degenerate eigenvalues present 13
equal digits, on levels 2 and 3. The results in Table IV are
for the same problem with nonsymmetric V, V(z,y,2) =
14 — 100 sin(30z + 20y + 10z)/[30 + sin(30z + 20y + 102)].
On the first level, V splits the previous cluster of six
eigenvalues into two degenerate clusters of two and four
eigenvalues. On levels 2 and 3, the cluster of four degen-
erate eigenvalues splits into two clusters of two degen-
erate eigenvalues. The degenerate eigenvalues present
14 equal digits. The six clustered eigenvalues have the
first five digits equal. On level 3, the eigenvectors come
out exactly orthogonal; their scalar products are of order
10~13 [15].

Table V shows the residuals of the nonlinear potential
W. The fact that the cluster structure differs on different
levels introduces special computational difficulties. The

problem has to be defined on complete clusters of eigen-
vectors and the clusters have to be completed. These dif-
ficulties can be detected and treated by the adaptive tech-
niques presented in [6]. The linear potential V =c+ V0
contains the shift ¢ = 14 to obtain a positive V in the re-
laxations. The eigenvalues for the problem with V' = V0
are obtained by shifting by 14 the found eigenvalues. The
first eigenvalue in the Tables III and IV would become
close to 0, i.e., —0.036 and —0.051, showing that without
changing the algorithm and by the same computational
work the eigenvalues for close to singular or singular op-
erators can be computed.

V. CONCLUSIONS

A MG simultaneous algorithm for the nonlinear
Schrédinger-Poisson EP is presented. The algorithm
combines the following techniques: the MG projection
and backrotations; the MG subspace continuation tech-
nique; the FAS treatment of global constraints; the si-
multaneous processing of eigenvectors, nonlinear poten-
tial, and global constraints. In the computational exam-
ples, the simultaneous MG technique reduced the large
number of sequential self-consistent iterations to one MG
simultaneous iteration (1-FMG here). One simultane-
ous cycle involves fewer computations than one sequen-
tial cycle (updating eigenvectors sequentially and sepa-
rating them on the finest level) due to the cheap coarse
level separation by the MGP and backrotations. The
MG subspace continuation techniques coupled with the
simultaneous processing on all levels helped keep the ap-
proximated solution in an appropriate region where the
algorithm is efficient. MG projections and backrotations
are used to separate the eigenvectors by coarse level work
and to overcome difficulties due to close or equal eigen-
values.

Computational examples for the nonlinear
Schrédinger-Poisson EP in 2D and 3D having special
computational difficulties, which are due to equal and
closely clustered eigenvalues, are presented. For these
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cases, the algorithm requires O(gN) operations for the
calculation of ¢ eigenvectors of size N. The algorithm
achieved the same accuracy, using the same amount of
work (per eigenvector), as the Poisson MG solver. A
second order approximation is obtained using the five-
point in 2D and nine-point in 3D discretized Laplacian,
by 1-FMG-V(1,1) in O(gN)work. The work was of order
of a few (about eight) fine level Gauss-Seidel relaxations
per eigenvector. Constant convergence rate per cycle of
0.15 was obtained for the presented cases. The numerical
tests showed that an accurate fine level separation was
obtained by the coarse level projection, even for problems
with very close or equal eigenvalues. This reduced the

SORIN COSTINER AND SHLOMO TA’ASAN 52

expensive fine level separation work of order O(g2N) of
previous algorithms to coarse level work of order O(gN).
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